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Debugging

Transforming a broken program to a working one

How? TRAFFIC!

ÅTrack the problem

ÅReproduce

ÅAutomate - (and simplify) the test case

ÅFind origins ςǿƘŜǊŜ ŎƻǳƭŘ ǘƘŜ άƛƴŦŜŎǘƛƻƴέ ōŜ ŦǊƻƳΚ

ÅFocus ςexamine the origins

ÅIsolate ςnarrow down the origins

ÅCorrect ςfix and verify the test case is successful
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Profiling
Profiling is central to understanding and improving application performance.
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Performance Improvement Workflow

Get a realistic 
test case

Profile your 
code

Look for the 
significant

What is the 
nature of the 

problem?   

Apply brain to 
solve

Think of the 
future
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Arm Software
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Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
ÅAvailable on the vast majority of the Top500 machines in the world
ÅFully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
ÅPowerful and in-depth error detection mechanisms (including memory debugging)
ÅSampling-based profiler to identify and understand bottlenecks
ÅAvailable at any scale (from serial to parallel applications running at petascale)

Easy to use by everyone
ÅUnique capabilities to simplify remote interactive sessions
ÅInnovative approach to present quintessential information to users

Very user-friendly

Fully Scalable 

Commercially supported
by Arm
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Run and ensure application correctness
Combination of debugging and re-compilation

Å Ensure application correctness with Arm DDT scalable debugger
Å Integrate with continuous integration system.
Å Use version control to track changes and leverage ForgeΩs built-in VCS support.

Examples:
$> ddt -- offline mpirun Ƶn 48 ./example
$> ddt mpirun Ƶn 48 ./example
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Visualizethe performanceof your application

Å Measure all performance aspects with Arm MAP parallel profiler
Å Identify bottlenecks and rewrite some code for better performance

Examples:
$> map -- profile mpirun Ƶn 48 ./example
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Debugging with DDT
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Arm DDT ïThe Debugger

Who had a rogue behaviour ?

ÅMerges stacks from processes and threads

Where did it happen? 

Åleaps to source

How did it happen? 

ÅDiagnostic messages

ÅSome faults evident instantly from source

Why did it happen?

Å¦ƴƛǉǳŜ ά{ƳŀǊǘ IƛƎƘƭƛƎƘǘƛƴƎέ

ÅSparklinescomparing data across processes

Run

with Arm tools

Identify 
a problem

Gather info
Who, Where, How, 

Why

Fix
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Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug flag typically - g

It is recommended to turn off optimization flags i.e. ïO0

Leaving optimizations turned on can cause the compiler to optimize out some variables and 
even functions making it more difficult to debug
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Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?
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Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can pause and 
investigate
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Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to tab(4198128,0) 
which causes the segmentation fault.

i is not used, and x and y are not initialized
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It works é Well, most of the time

A strange behaviour where the 
ŀǇǇƭƛŎŀǘƛƻƴ άǎƻƳŜǘƛƳŜǎέ ŎǊŀǎƘŜǎ ƛǎ ŀ 
typical sign of a memory bug

Arm DDT is able to force the crash 
to happen

ωI am buggy 
ANDnot 
buggy. How 
about that?

SCHRODIN
BUG !
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Advanced Memory Debugging


